
Reactors SDK Documentation
Release 1.0.0a

TACC Open Source

June 21, 2018

Quick Start

1 Pre-requisites 3

2 Start a Project 5
2.1 Let’s go! . 5

3 Configure the Project 7
3.1 Step 1: Edit config.rc . 7
3.2 Step 2: Edit config.yml . 7
3.3 Step 3: Create secrets.json . 7

4 Write some code 9

5 Deploy the Reactor 11

6 Validate deployment 13

7 Test by sending a message 15

8 User Guide 17

9 Third-party Webhooks 19

10 Agave API Notifications 21

11 Finite State Machine 23

12 Schedule Actions 25

13 Automate Deployment 27

14 Unit Testing 29

15 RabbitMQ 31

16 AWS SNS 33

17 Getting Help 35
17.1 TACC.cloud Slack . 35
17.2 Tenant-specific Assistance . 35

i

18 Other Tutorials and Guides 37

19 Use third-party Docker images 39

20 Import from other Serverless systems 41

21 Extend to other languages 43

22 Contribute to Reactors 45

23 Indices and tables 47

ii

Reactors SDK Documentation, Release 1.0.0a

Nearly any language can be used to build functions for TACC’s Abaco serverless computing platform. This is the
documentation for a specific, opinionated approach that embeds a client-side Python2.7/3.6 support library called
Reactors in the container that hosts an Abaco function.

Reactors extends the Abaco Actors concept with:

• YAML-based configuration mechanism with environment overrides

• Support for first-class mocking and local-side testing

• Semantic aliases for Actors and other TACC.cloud API assets

• Helper methods for working with integrations like Slack and IFTTT

• Introspection of the actor’s platform-level attributes

• Advanced logging with support for redacting sensitive text

• Optimized TACC.cloud API operations

Quick Start 1

http://useabaco.cloud/
http://developer.tacc.cloud/abaco.html
https://pypi.python.org/pypi/taccreactors

Reactors SDK Documentation, Release 1.0.0a

2 Quick Start

CHAPTER 1

Pre-requisites

1. You must have installed and configured the Agave CLI and the Abaco CLI.

2. You should have gone through the Abaco Quickstart and be familiar deploying, running, and querying an Actor

3

https://github.com/TACC-Cloud/agave-cli/
https://github.com/TACC-Cloud/abaco-cli

Reactors SDK Documentation, Release 1.0.0a

4 Chapter 1. Pre-requisites

CHAPTER 2

Start a Project

Concept: The Abaco CLI will automatically generate a skeleton for your Reactor that is preconfigured for easy
building, testing, and deployment. This same structure lends itself well to adopting continuous integration and unit
testing if you should need those practices. The list of templates is limited at present, and constrained to Python
language support. This is expected to change in the future. In addition, it is expected that deeper integration with
Github and Gitlab will be added to the Reactors workflow.

2.1 Let’s go!

Run abaco init, specifying language (python2 or python3 for now) and a URL-safe name. A good rule-of-
thumb is to name a Reactors project like one would a Git repository.

$ abaco init -l python3 -n hello_world
$ ls hello_world/
Dockerfile config.yml reactor.py requirements.txt
TEMPLATE.md message.jsonschema reactor.rc secrets.json.sample

Details on what each project file does are provided in the User Guide.

5

Reactors SDK Documentation, Release 1.0.0a

6 Chapter 2. Start a Project

CHAPTER 3

Configure the Project

Concept: The Dockerfile is a recipe to build the environment where our function will run. The func-
tion itself is implemented in reactor.py. A Python module built into the base Docker image (reactors)
works with config.yml and message.jsonschema to provide declarative configuration and validation. The
requirements.txt file is used with pip in the container image to specify additional Python modules to install.
Finally, the Reactors workflow uses reactor.rc to specify name, version, and other metadata, and secrets.
json as a way to pass sensitive information into a function without committing it to the container image.

3.1 Step 1: Edit config.rc

Naivigate to the project directory and edit DOCKER_HUB_ORG in config.rc to reflect either your Docker Hub
username or an organization where you have push and pull access. For example, if a person with the Docker Hub
username taco is a member of Docker Hub group cabana, they can choose either taco or cabana as the value
for DOCKER_HUB_ORG

3.2 Step 2: Edit config.yml

Change the config file to read as follows.

logs:

level: INFO
token: ~

dont_reveal: ~

3.3 Step 3: Create secrets.json

Write a JSON file with the following contents.

7

Reactors SDK Documentation, Release 1.0.0a

{"_REACTORS_DONT_REVEAL": "This is a secret"}

8 Chapter 3. Configure the Project

CHAPTER 4

Write some code

Concept: An Abaco function is a script or binary that is set as the default command in a container, accepts a message
and parameters from environment variables, and can (optionally) make use of a pre-authenticated Agave API client.
Functions can be written in any language, but the Reactors Python SDK streamlines these processes and adds support
for some experimental platform features.

Action: Replace the contents of reactor.py

1 from reactors.runtime import Reactor
2

3

4 def main():
5 """Main function"""
6 r = Reactor()
7 r.logger.info("I received: {}".format(r.context['raw_message']))
8 r.logger.debug("This is a DEBUG message from actor {}".format(r.uid))
9 r.logger.info("This is an INFO message from actor {}".format(r.uid))

10 r.logger.warning("This is a warning from actor {}".format(r.uid))
11

12 r.logger.info("Here's that secret value: {}".format(
13 r.settings.dont_reveal))
14

15 if __name__ == '__main__':
16 main()

This example illustrates use of the Reactor object, specifically, its settings, context, and logging functions. More
features and use cases are described in the User Guide and Scenarios sections.

9

Reactors SDK Documentation, Release 1.0.0a

10 Chapter 4. Write some code

CHAPTER 5

Deploy the Reactor

Concept: Functions can be deployed with the abaco create CLI command using a Docker image that has been
built and pushed to a public registry. This is a very flexible approach, but it requires the authorone to execute the same
series of steps each time. The abaco deploy command implements a streamlined workflow that, with configuration
guidance from reactor.rc, automatically builds the image, pushes it, gathers environment variables, and deploys
or updates the Reactor.

Action: Ensure the image builds correctly with a dry run

$ abaco deploy -R

[INFO] Build Options: --rm=true --pull
Sending build context to Docker daemon 10.75kB
Step 1/1 : FROM sd2e/reactors:python3
python3: Pulling from sd2e/reactors
Digest: sha256:789c9057306d618168193c75a6c47ca5c500bc6fcdb60dc30f27f9bf8b1af404
Status: Image is up to date for sd2e/reactors:python3
Executing 5 build triggers
---> Using cache
---> Using cache
---> c06a54dcc66c

Successfully built c06a54dcc66c
Successfully tagged taco/hello_world:0.1
[INFO] Stopping deployment as this was only a dry run!

Action: Deploy the Reactor

$ abaco deploy

[INFO] Build Options: --rm=true --pull
Sending build context to Docker daemon 10.75kB
Step 1/1 : FROM sd2e/reactors:python3
python3: Pulling from sd2e/reactors
Digest: sha256:789c9057306d618168193c75a6c47ca5c500bc6fcdb60dc30f27f9bf8b1af404
Status: Image is up to date for sd2e/reactors:python3

(continues on next page)

11

Reactors SDK Documentation, Release 1.0.0a

(continued from previous page)

Executing 5 build triggers
---> Using cache
---> Using cache
---> Using cache
---> Using cache
---> Using cache
---> c06a54dcc66c

Successfully built c06a54dcc66c
Successfully tagged taco/hello_world:0.1
The push refers to repository [docker.io/taco/hello_world]
f9dde2603ec7: Pushed
87f9719c8a1d: Mounted from sd2e/reactors
913edbb0371b: Mounted from sd2e/reactors
0.1: digest: sha256:a944131700e2ae540dc76f2c1c2d72e3909fdfd287b42a505c339ff79615bac7
→˓size: 7184
[INFO] Pausing to let Docker Hub register that the repo has been pushed
[INFO] Reading environment variables from secrets.json
Successfully deployed actor with ID: e6rkEBlzJ8vG4

12 Chapter 5. Deploy the Reactor

CHAPTER 6

Validate deployment

Concept: A Reactor that has been deployed successfully will be accessible via the actors API and will report a
status of SUBMITTED while the function is being deployed, then READY when it is prepared to accept messages.

Action: List the new actor by its identifier

$ abaco ls e6rkEBlzJ8vG4

The expected response should resemble this JSON document:

1 {
2 "message": "Actor retrieved successfully.",
3 "result": {
4 "_links": {
5 "executions": "https://api.sd2e.org/actors/v2/e6rkEBlzJ8vG4/executions",
6 "owner": "https://api.sd2e.org/profiles/v2/taco",
7 "self": "https://api.sd2e.org/actors/v2/e6rkEBlzJ8vG4"
8 },
9 "createTime": "2018-06-21 14:39:16.435800",

10 "defaultEnvironment": {
11 "_REACTORS_DONT_REVEAL": "This is a secret"
12 },
13 "description": "",
14 "gid": 845005,
15 "id": "e6rkEBlzJ8vG4",
16 "image": "taco/hello_world:0.1",
17 "lastUpdateTime": "2018-06-21 14:39:16.435800",
18 "mounts": [
19 {
20 "container_path": "/work",
21 "host_path": "/work",
22 "mode": "rw"
23 },
24 {
25 "container_path": "/corral",

(continues on next page)

13

Reactors SDK Documentation, Release 1.0.0a

(continued from previous page)

26 "host_path": "/corral/projects/TACC-Cloud",
27 "mode": "rw"
28 }
29],
30 "name": "hello_world",
31 "owner": "taco",
32 "privileged": false,
33 "state": {},
34 "stateless": false,
35 "status": "READY",
36 "statusMessage": " ",
37 "tasdir": "05201/taco",
38 "type": "none",
39 "uid": 845005,
40 "useContainerUid": false
41 },
42 "status": "success",
43 "version": "0.8.0"
44 }

Note that result.status is READY - this means the actor is ready to do work. If it reads SUBMITTED,
deployment is stil in progress. If it reads ERROR, a problem has been encountered.

14 Chapter 6. Validate deployment

CHAPTER 7

Test by sending a message

15

Reactors SDK Documentation, Release 1.0.0a

16 Chapter 7. Test by sending a message

CHAPTER 8

User Guide

17

Reactors SDK Documentation, Release 1.0.0a

18 Chapter 8. User Guide

CHAPTER 9

Third-party Webhooks

19

Reactors SDK Documentation, Release 1.0.0a

20 Chapter 9. Third-party Webhooks

CHAPTER 10

Agave API Notifications

21

Reactors SDK Documentation, Release 1.0.0a

22 Chapter 10. Agave API Notifications

CHAPTER 11

Finite State Machine

23

Reactors SDK Documentation, Release 1.0.0a

24 Chapter 11. Finite State Machine

CHAPTER 12

Schedule Actions

25

Reactors SDK Documentation, Release 1.0.0a

26 Chapter 12. Schedule Actions

CHAPTER 13

Automate Deployment

27

Reactors SDK Documentation, Release 1.0.0a

28 Chapter 13. Automate Deployment

CHAPTER 14

Unit Testing

29

Reactors SDK Documentation, Release 1.0.0a

30 Chapter 14. Unit Testing

CHAPTER 15

RabbitMQ

31

Reactors SDK Documentation, Release 1.0.0a

32 Chapter 15. RabbitMQ

CHAPTER 16

AWS SNS

33

Reactors SDK Documentation, Release 1.0.0a

34 Chapter 16. AWS SNS

CHAPTER 17

Getting Help

17.1 TACC.cloud Slack

You are welcome to join the developers and users of TACC.cloud services in TACC.cloud Slack. Helpful channels to
join include #support and #announcements

17.2 Tenant-specific Assistance

If you are a user from any of the following organizations, you can get help from additional listed resources.

• CyVerse

• DesignSafe

• Synergistic Discovery and Design (SD2)

35

https://tacc-cloud.slack.com/

Reactors SDK Documentation, Release 1.0.0a

36 Chapter 17. Getting Help

CHAPTER 18

Other Tutorials and Guides

37

Reactors SDK Documentation, Release 1.0.0a

38 Chapter 18. Other Tutorials and Guides

CHAPTER 19

Use third-party Docker images

39

Reactors SDK Documentation, Release 1.0.0a

40 Chapter 19. Use third-party Docker images

CHAPTER 20

Import from other Serverless systems

41

Reactors SDK Documentation, Release 1.0.0a

42 Chapter 20. Import from other Serverless systems

CHAPTER 21

Extend to other languages

43

Reactors SDK Documentation, Release 1.0.0a

44 Chapter 21. Extend to other languages

CHAPTER 22

Contribute to Reactors

45

Reactors SDK Documentation, Release 1.0.0a

46 Chapter 22. Contribute to Reactors

CHAPTER 23

Indices and tables

• genindex

• modindex

• search

47

	Pre-requisites
	Start a Project
	Let’s go!

	Configure the Project
	Step 1: Edit config.rc
	Step 2: Edit config.yml
	Step 3: Create secrets.json

	Write some code
	Deploy the Reactor
	Validate deployment
	Test by sending a message
	User Guide
	Third-party Webhooks
	Agave API Notifications
	Finite State Machine
	Schedule Actions
	Automate Deployment
	Unit Testing
	RabbitMQ
	AWS SNS
	Getting Help
	TACC.cloud Slack
	Tenant-specific Assistance

	Other Tutorials and Guides
	Use third-party Docker images
	Import from other Serverless systems
	Extend to other languages
	Contribute to Reactors
	Indices and tables

