

Reactors SDK

Nearly any language can be used to build functions for TACC’s Abaco [http://useabaco.cloud/] serverless computing platform [http://developer.tacc.cloud/abaco.html]. This is the documentation for a specific, opinionated approach that embeds a client-side Python2.7/3.6 support library called Reactors [https://pypi.python.org/pypi/taccreactors] in the container that hosts an Abaco function.

Reactors extends the Abaco Actors concept with:

	YAML-based configuration mechanism with environment overrides

	Support for first-class mocking and local-side testing

	Semantic aliases for Actors and other TACC.cloud API assets

	Helper methods for working with integrations like Slack and IFTTT

	Introspection of the actor’s platform-level attributes

	Advanced logging with support for redacting sensitive text

	Optimized TACC.cloud API operations

Quick Start

	Pre-requisites

	Start a Project
	Let’s go!

	Configure the Project
	Step 1: Edit config.rc

	Step 2: Edit config.yml

	Step 3: Create secrets.json

	Write some code

	Deploy the Reactor

	Validate deployment

	Test by sending a message

User Guide

	User Guide

Scenarios

	Third-party Webhooks

	Agave API Notifications

	Finite State Machine

	Schedule Actions

	Automate Deployment

	Unit Testing

	RabbitMQ

	AWS SNS

Resources

	Getting Help
	TACC.cloud Slack

	Tenant-specific Assistance

	Other Tutorials and Guides

Porting

	Use third-party Docker images

	Import from other Serverless systems

	Extend to other languages

Contributing

	Contribute to Reactors

Indices and tables

	Index

	Module Index

	Search Page

Pre-requisites

	You must have installed and configured the Agave CLI [https://github.com/TACC-Cloud/agave-cli/] and the Abaco CLI [https://github.com/TACC-Cloud/abaco-cli].

	You should have gone through the Abaco Quickstart and be familiar deploying, running, and querying an Actor

Start a Project

Concept: The Abaco CLI will automatically generate a skeleton for your Reactor that is preconfigured for easy building, testing, and deployment. This same structure lends itself well to adopting continuous integration and unit testing if you should need those practices. The list of templates is limited at present, and constrained to Python language support. This is expected to change in the future. In addition, it is expected that deeper integration with Github and Gitlab will be added to the Reactors workflow.

Let’s go!

Run abaco init, specifying language (python2 or python3 for now) and a URL-safe name. A good rule-of-thumb is to name a Reactors project like one would a Git repository.

$ abaco init -l python3 -n hello_world
$ ls hello_world/
Dockerfile config.yml reactor.py requirements.txt
TEMPLATE.md message.jsonschema reactor.rc secrets.json.sample

Details on what each project file does are provided in the User Guide.

Configure the Project

Concept: The Dockerfile is a recipe to build the environment where our function will run. The function itself is implemented in reactor.py. A Python module built into the base Docker image (reactors) works with config.yml and message.jsonschema to provide declarative configuration and validation. The requirements.txt file is used with pip in the container image to specify additional Python modules to install. Finally, the Reactors workflow uses reactor.rc to specify name, version, and other metadata, and secrets.json as a way to pass sensitive information into a function without committing it to the container image.

Step 1: Edit config.rc

Naivigate to the project directory and edit DOCKER_HUB_ORG in config.rc to reflect either your Docker Hub username or an organization where you have push and pull access. For example, if a person with the Docker Hub username taco is a member of Docker Hub group cabana, they can choose either taco or cabana as the value for DOCKER_HUB_ORG

Step 2: Edit config.yml

Change the config file to read as follows.

logs:
 level: INFO
 token: ~
dont_reveal: ~

Step 3: Create secrets.json

Write a JSON file with the following contents.

{"_REACTORS_DONT_REVEAL": "This is a secret"}

Write some code

Concept: An Abaco function is a script or binary that is set as the default command in a container, accepts a message and parameters from environment variables, and can (optionally) make use of a pre-authenticated Agave API client. Functions can be written in any language, but the Reactors Python SDK streamlines these processes and adds support for some experimental platform features.

Action: Replace the contents of reactor.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 from reactors.runtime import Reactor

 def main():
 """Main function"""
 r = Reactor()
 r.logger.info("I received: {}".format(r.context['raw_message']))
 r.logger.debug("This is a DEBUG message from actor {}".format(r.uid))
 r.logger.info("This is an INFO message from actor {}".format(r.uid))
 r.logger.warning("This is a warning from actor {}".format(r.uid))

 r.logger.info("Here's that secret value: {}".format(
 r.settings.dont_reveal))

 if __name__ == '__main__':
 main()

This example illustrates use of the Reactor object, specifically, its settings, context, and logging functions. More features and use cases are described in the User Guide and Scenarios sections.

Deploy the Reactor

Concept: Functions can be deployed with the abaco create CLI command using a Docker image that has been built and pushed to a public registry. This is a very flexible approach, but it requires the authorone to execute the same series of steps each time. The abaco deploy command implements a streamlined workflow that, with configuration guidance from reactor.rc, automatically builds the image, pushes it, gathers environment variables, and deploys or updates the Reactor.

Action: Ensure the image builds correctly with a dry run

$ abaco deploy -R

 [INFO] Build Options: --rm=true --pull
 Sending build context to Docker daemon 10.75kB
 Step 1/1 : FROM sd2e/reactors:python3
 python3: Pulling from sd2e/reactors
 Digest: sha256:789c9057306d618168193c75a6c47ca5c500bc6fcdb60dc30f27f9bf8b1af404
 Status: Image is up to date for sd2e/reactors:python3
 # Executing 5 build triggers
 ---> Using cache
 ---> Using cache
 ---> c06a54dcc66c
 Successfully built c06a54dcc66c
 Successfully tagged taco/hello_world:0.1
 [INFO] Stopping deployment as this was only a dry run!

Action: Deploy the Reactor

$ abaco deploy

 [INFO] Build Options: --rm=true --pull
 Sending build context to Docker daemon 10.75kB
 Step 1/1 : FROM sd2e/reactors:python3
 python3: Pulling from sd2e/reactors
 Digest: sha256:789c9057306d618168193c75a6c47ca5c500bc6fcdb60dc30f27f9bf8b1af404
 Status: Image is up to date for sd2e/reactors:python3
 # Executing 5 build triggers
 ---> Using cache
 ---> Using cache
 ---> Using cache
 ---> Using cache
 ---> Using cache
 ---> c06a54dcc66c
 Successfully built c06a54dcc66c
 Successfully tagged taco/hello_world:0.1
 The push refers to repository [docker.io/taco/hello_world]
 f9dde2603ec7: Pushed
 87f9719c8a1d: Mounted from sd2e/reactors
 913edbb0371b: Mounted from sd2e/reactors
 0.1: digest: sha256:a944131700e2ae540dc76f2c1c2d72e3909fdfd287b42a505c339ff79615bac7 size: 7184
 [INFO] Pausing to let Docker Hub register that the repo has been pushed
 [INFO] Reading environment variables from secrets.json
 Successfully deployed actor with ID: e6rkEBlzJ8vG4

Validate deployment

Concept: A Reactor that has been deployed successfully will be accessible via the actors API and will report a status of SUBMITTED while the function is being deployed, then READY when it is prepared to accept messages.

Action: List the new actor by its identifier

$ abaco ls e6rkEBlzJ8vG4

The expected response should resemble this JSON document:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	{
 "message": "Actor retrieved successfully.",
 "result": {
 "_links": {
 "executions": "https://api.sd2e.org/actors/v2/e6rkEBlzJ8vG4/executions",
 "owner": "https://api.sd2e.org/profiles/v2/taco",
 "self": "https://api.sd2e.org/actors/v2/e6rkEBlzJ8vG4"
 },
 "createTime": "2018-06-21 14:39:16.435800",
 "defaultEnvironment": {
 "_REACTORS_DONT_REVEAL": "This is a secret"
 },
 "description": "",
 "gid": 845005,
 "id": "e6rkEBlzJ8vG4",
 "image": "taco/hello_world:0.1",
 "lastUpdateTime": "2018-06-21 14:39:16.435800",
 "mounts": [
 {
 "container_path": "/work",
 "host_path": "/work",
 "mode": "rw"
 },
 {
 "container_path": "/corral",
 "host_path": "/corral/projects/TACC-Cloud",
 "mode": "rw"
 }
],
 "name": "hello_world",
 "owner": "taco",
 "privileged": false,
 "state": {},
 "stateless": false,
 "status": "READY",
 "statusMessage": " ",
 "tasdir": "05201/taco",
 "type": "none",
 "uid": 845005,
 "useContainerUid": false
 },
 "status": "success",
 "version": "0.8.0"
}

Note that result.status is READY - this means the actor is ready to do work. If it reads SUBMITTED, deployment is stil in progress. If it reads ERROR, a problem has been encountered.

Test by sending a message

User Guide

Third-party Webhooks

Agave API Notifications

Finite State Machine

Schedule Actions

Automate Deployment

Unit Testing

RabbitMQ

AWS SNS

Getting Help

TACC.cloud Slack

You are welcome to join the developers and users of TACC.cloud services in TACC.cloud Slack [https://tacc-cloud.slack.com/]. Helpful channels to join include #support and #announcements

Tenant-specific Assistance

If you are a user from any of the following organizations, you can get help from additional listed resources.

	CyVerse

	DesignSafe

	Synergistic Discovery and Design (SD2)

Other Tutorials and Guides

Use third-party Docker images

Import from other Serverless systems

Extend to other languages

Contribute to Reactors

Index

Your First Reactor

	Pre-requisites

	Start a Project
	Let’s go!

	Configure the Project
	Step 1: Edit config.rc

	Step 2: Edit config.yml

	Step 3: Create secrets.json

	Write some code

	Deploy the Reactor

	Validate deployment

	Test by sending a message

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Reactors SDK

 		
 Pre-requisites

 		
 Start a Project

 		
 Let’s go!

 		
 Configure the Project

 		
 Step 1: Edit config.rc

 		
 Step 2: Edit config.yml

 		
 Step 3: Create secrets.json

 		
 Write some code

 		
 Deploy the Reactor

 		
 Validate deployment

 		
 Test by sending a message

 		
 User Guide

 		
 Third-party Webhooks

 		
 Agave API Notifications

 		
 Finite State Machine

 		
 Schedule Actions

 		
 Automate Deployment

 		
 Unit Testing

 		
 RabbitMQ

 		
 AWS SNS

 		
 Getting Help

 		
 TACC.cloud Slack

 		
 Tenant-specific Assistance

 		
 Other Tutorials and Guides

 		
 Use third-party Docker images

 		
 Import from other Serverless systems

 		
 Extend to other languages

 		
 Contribute to Reactors

_static/comment-bright.png

_static/ajax-loader.gif

